

Technical White Paper

A Framework for COBA Server A Framework for COBA Server A Framework for COBA Server A Framework for COBA Server

111999...111111...222000000111

 CCCOOOBBBAAA GGGrrrooouuuppp

2////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Index
COBA TECHNICAL WHITE PAPER

A FRAMEWORK FOR COBA SERVER.. 1

INDEX ... 2

INTRODUCTION .. 3

SCOPE... 3
READERSHIP ... 3
COBA CONTROL SYSTEM.. 3

Control Network ... 4
Control application... 4
COBA Server... 5

DESIGN REQUIREMENTS FOR COBA FRAMEWORK .. 6

SYSTEM ARCHITECTURE .. 7

CONTROL NETWORK ADAPTATION LEVEL ... 8
INSTRUMENTATION LEVEL ... 8
MESSAGING ADAPTATION LEVEL... 8
AGENT LEVEL .. 8
DISTRIBUTED CONTROL APPLICATION LEVEL.. 9
XML AND CONFIGURATION FILE ... 9

COBA SERVER COMPONENTS.. 10

CONTROL NETWORK ADAPTATION LAYER... 10
NID ... 10
NI Event Dispatcher.. 11

INSTRUMENTATION LAYER... 13
RBeans .. 13

AGENT LAYER.. 18
System Service... 18
Agent Services... 18

MESSAGING ADAPTATION LAYER .. 19
JSP Technology... 19
RMI Technology.. 20

COBA AGENTS ... 22

COMMON AGENTS .. 22
Configuration Agent.. 22
Query Agent .. 22
Event Notification Agent ... 23

APPLICATION SPECIFIC AGENTS... 23

TERMINOLOGY AND ABBREVIATIONS... 24

REFERENCES AND RELATED DOCUMENTS... 26

3////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Introduction
The control network meets the data network – COBA offers a standard for access to all building functionality

Scope
This document defines the COBA control system and specifies the role of the control
server within COBA control system. The architecture and the framework for the control
server, i.e. COBA Server, are also specified. The document describes the
instrumentation mechanisms of controllable resources and outlines a set of basic
services offered by the framework. Detailed specifications of these services and related
Java classes are released in separate documents.
The other main purpose of this document is to define the concepts and terms used in
connection with COBA Server. This provides a common reference point and guidelines
for various interface specifications to be released at later stage.

Readership
This document is meant to give a high-level understanding of COBA Server, especially
for people working in the area of control systems (e.g. solution providers, system
integrators, software designers and implementers). The document links to various
detailed specifications. Readers such as software developers can follow the links to
appropriate documents for in-depth information1 of different aspects of COBA Server.

COBA Control System
As shown in Figure 1, COBA control system is a tiered system. It consists of control
applications, data network, COBA Server and control network. COBA Server connects to
control network and to data network. COBA Server acts as an agent for control
applications that reside in the data network, through controlling the devices connected to
the control network. Control of resources involves tasks such as monitoring,
configuration, handling of alarms, etc.

1 Since most of the interface specifications are yet to be written, some of the requirements imposed upon the
interfaces are highlighted by the Interface Requirements heading. The developers shall pay attention to those
requirements.

4////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Figure 1 COBA Control System

Control Network

Data Network
(Internet)

Control Application Host

Controllable Devices, e.g. LON devices

COBA ServerCOBA Server

Control Network
A control network includes the operative building automation functionality. Control
network is not considered as part of the data network. Building automation functionality
influences e.g. heaters, lights, air-handling units, etc.

Control application
A control application runs in the data network and controls devices connected to the
control network. Control applications react to value or status changes of the controlled
resources. For example, when an external event triggers an alarm in the control network,
COBA Server provides the alarm to control applications.

External Application
From COBA Server point of view, a control application is an external application. The
terms control application and external application are used interchangeably in this
document.

5////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

COBA Server
COBA Server integrates the control network and the data network together, in order to
increase the accessibility of the control network. Control applications running on the data
network allow users to interact with the devices on the control network.
COBA Server communicates with controllable devices on the control network using a
control network protocol. The first reference implementation of COBA Server supports
LonWorks technology using LonTalk protocol. LonWorks is commonly used in existing
control networks. COBA Server can also provide support for other control protocols,
such as EHS, X10, etc. The control network may also include devices using proprietary
or industry standard protocols.
The control server communicates with external applications over a TCP/IP network using
messaging technology such as HTTP, RMI, CORBA, etc.

Hardware
Any hardware with the following qualities is a potential candidate for COBA Server:

− Sufficient CPU power, memory and storage capacity

− Capability to accommodate appropriate networking peripherals that connect to
the control network and to the data network.

The selected hardware for the first reference implementation is Nokia Home Server.

Software
Since COBA Server is NOT intended to be used by a single control application alone,
COBA Server software consists of, by design, COBA framework and service
components. With this approach COBA Server can support a wide range of applications
with less effort than otherwise.
COBA framework provides building blocks for service components. It is implemented on
top of Java virtual machine using a set of Java packages including but not limited to
OSGi. The first reference implementation will be based on Linux operating system.
A service component provides specific functionality that is either common to most of the
control applications or specific to a particular application. These service components are
referred to as COBA services. Some of the service components can be accessed
directly by control applications (using HTTP or RMI mechanism); some can only be
accessed indirectly. COBA services that can be accessed directly are referred to as
agent services. COBA services that can only be accessed indirectly are referred to as
system services.

Release Kit
COBA framework release kit consists of COBA framework and a set of agents. The
release kit also includes interface and API specifications as well as user guide
documentation. The framework is bundled into a number of packages.
COBA control system solution providers can add additional system services and agent
services to the server if the services in the release kit do not have the functionality
required by the application in question.

6////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Design Requirements for COBA Framework
Requirements and goals for COBA framework design are listed and explained below.

Support for distributed applications

COBA framework is designed so that it can support control applications running in
different locations. The framework will support multiple control applications running
simultaneously.
The components in COBA Server act as mediator between the application and the
control network. COBA framework shall have as little business logic as possible. This
way, it can embrace wider range of control applications developed by third party solution
providers.

Support for dynamic component update

COBA framework shall provide a set of common COBA services. Additional services will
be created by developers or integrators of COBA control system solutions. All services
and controllable resources can be dynamically loaded, unloaded or updated.

Scalable control system

COBA executable components shall be independent components that can be plugged
into the control server when needed. COBA based control solutions, therefore, can scale
from small footprint to large control servers, controlling from small to large number of
devices.

Low investment for control application development

COBA framework shall include a set of COBA services and reusable objects such as
beans. These will provide functionality that is required by a wide range of control
applications. This way, required development effort and cost of control applications are
minimized.

Short time to market

This goal dictates the use of existing and commonly deployed computing technologies
whenever possible.

7////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

System Architecture
The architecture of COBA system is based on Java Management Extension (JMX)
architecture. The architecture adopts many of JMX’s key concepts and approaches, like
the concept of agents, the use of JavaBeans, etc.
From specification point of view, COBA system architecture is divided into the following
levels as shown in Figure 2:

− External distributed control application level.

− Messaging adaptation level

− Agent level

− Instrumentation level

− Control network adaptation level

Figure 2 COBA System Architecture

COBA Server

Distributed
Control

Applications

Control
Network

Broker

Network
Interface

Driver

System
Service Bean Registry

Messaging
Adaptation level

Agent level

Instrumentation
level

Control Network
Adaptation level

Resource
Bean

Agent
Service

Glue

Control
Application level

JSP page

Levels in JMX and COBA architectures correspond to each other as follows:

− connector and protocol adaptation level in JMX ~ messaging adaptation level in
COBA

8////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

− COBA includes an additional control network adaptation level at the bottom.

Control Network Adaptation Level
The control network adaptation level provides a specification for implementing network
interface drivers. Network interface drivers allow physical control devices to interact with
the rest of the COBA Server.
Network interface drivers for the control network must conform to this interface
specification. The first reference implementation of control network device drivers is
LonTalk protocol.

Instrumentation Level
The instrumentation level provides a specification for implementing logical
representations of controllable resources.
A controllable resource can be a physical device, a group of physical devices, a logical
device, a service, etc. The instrumentation of a controllable resource is provided by one
or several Resource Beans, i.e. RBeans. Control applications can configure and monitor
the instrumented resource through RBeans.

Messaging Adaptation Level
The messaging adaptation level includes the existing specifications and / or provides
new specifications for messaging transportation and communication mechanisms
between control applications and COBA Server.
Control applications communicate with COBA Server through a messaging adaptation
component, which is also referred to as the ‘broker’ in the rest of this document.
The default mechanism for exchanging information about controllable resources and
their attributes is XML. The default mechanisms for messaging communication are RMI
and HTTP. RMI broker and HTTP broker are the default brokers included in the COBA
framework. RMI broker uses Java RMI communication mechanism, while HTTP broker
uses JSP to relay requests and replies from and to WEB based control applications.
COBA Server can also have other types of brokers without having to re-implement
COBA services. For example, if the control applications are based on CORBA
technology, there will be a CORBA broker for linking the applications to the existing
services.

Agent Level
The agent level provides a specification for implementing agents, and interface
specifications for implementing services provided by COBA Server. Services provided by
COBA Server are referred to as COBA services. The services that are exposed directly
to remote control applications are called agent services, while those accessible only by
components inside the server are called system services.

9////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

An agent is an execution unit, which acts as the liaison between RBeans and the control
application. An agent composes of a broker, one or more agent services, a collection of
system services, a set of RBeans and the RBeans acting as device drivers.
Agents make RBeans available to control applications. Agents are built in a standard
way without having to understand the semantics of the controllable resources.
Controllable resources are hidden behind the RBeans and the network interface drivers.
Furthermore, agents can be built so that they do not need to know the control
applications that use them.
Agents are implemented or integrated by developers of the COBA control system
solutions. The framework kit includes several common agents, which can be used as
such by a wide range of control applications.

Distributed Control Application Level
The distributed control application level implements control applications operating on
RBeans over agents. The specifications for distributed applications are outside the
scope of this document.
The design of COBA framework is not concerned of the functionality of the control
applications. The framework provides only the mechanism and services to allow
appropriate RBeans to be plugged into the server, hence enabling control of
instrumented devices.
The combination of distributed control applications and agents form a complete control
solution. Control applications may also cooperate with one another across the network to
provide distributed and scalable control solutions.

XML and Configuration File
XML is used to describe the characteristics of the controllable resources in text. A
configuration file in XML format is the default way for COBA Server to configure the
system at system initialization stage.

10////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

COBA Server Components
In component view, COBA Server is divided into layers as shown in Figure 3. Each
layer consists of components offering a specific set of functionality. Figure 3 also shows
the key packages that are part of the COBA Server infrastructure, but that are not part of
the J2SE.

Figure 3 COBA Server Components

COBA Server

Broker

NI Event
dispatcher

System
Service Bean Registry

Messaging
Adaptation layer

Agent layer

Instrumentation
layer

Control Network
Adaptation layer

Resource
Bean

Agent
Service

JSP Glue

JSP page

Se
cu

rit
y

Pa
ck

ag
e

JA
X

B
 P

ac
ka

ge

O
SG

i

RMI Glue
tomcat

Network
Interface

Driver

Control Network Adaptation Layer
Network Interface Driver (NID) and NI Event Dispatcher are the main components in the
control network adaptation layer. Each of these components includes a set of Java
interface classes defining the operations available to the clients, as specified in the
COBA Network Interface Driver Specification.

NID
The Network Interface Driver communicates with physical resources over a network
interface port, using the protocol understood by the resources. Each network interface
port is served by only one Network Interface Driver.
The communication protocol is normally a data link layer protocol. The first implemented
NID supports LonTalk Protocol. The server can have multiple instances of NID, each

11////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

attached to a different port. The server can also have multiple types of NID, each
implementing a different protocol.

Requirements for the Network Interface Protocol
The protocol used by physical resources must be able to support setting and getting
attribute values of the resources, and to enable the server to determine whether the
physical device is still alive.

Interfaces
The key interface methods of NID are ‘write’ and ‘read’ operations for setting and getting
attribute values of the devices. These operations are by default blocking kind of
operations; in other words, the client will wait until the required value is set or returned.
NID may also provide non-blocking kind of operations for those clients who do not care
about the result of the operation.
The main parameters of these operations are address and payload or address, attribute
type and attribute value. In Figure 4, the main interface class of NID is called NIDIF,
other interface classes for entities such as address, message header etc are specified in
the interface specification.

IInntteerrffaaccee RReeqquuiirreemmeenntt:: OOppeerraattiioonn SSiiggnnaattuurreess
The signatures for read and write operations are dictated in part by how attributes are
represented as outlined in the Attributes section in the instrumentation layer. The
address signature is a Java class and is specified in the COBA Network Interface Driver
Specification.

Relationships
The key client of the NID is the RBean that represents the physical device.

NI Event Dispatcher
The NI Event Dispatcher is responsible for distributing events received from the physical
devices. NI Event Dispatcher uses Java event model to distribute events to subscribers.

Interfaces
The EventRegisterIF interface class as show in Figure 4 provides the subscribers a way
to subscribe to events based on message types, source address and destination
address of event messages. The subscriber of the NI Event Dispatcher needs to
implement the EventSubscriber interface class in order to subscribe and receive events.

IInntteerrffaaccee RReeqquuiirreemmeenntt:: BBee ccoonnssiisstteenntt wwiitthh EEvveenntt NNoottiiffiiccaattiioonn SSyysstteemm
SSeerrvviiccee..
The event distribution related interfaces must be based on the interfaces defined in the
Event Notification system service. This provides a uniform way for the clients to handle
events, irrespective of the package of the implementation classes.

12////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Relationships
An RBean of a physical device and an RBean of a logical resource can be clients of the
NI Event Dispatcher. However, for performance reasons it is recommended to keep the
number of subscribers at a minimum. As such, the clients of the NI Event Dispatcher
component are mostly management or administration related entities. Such clients
normally subscribe to a group of events and know how to deal with received events.
The event notification system service may also be a client of the NI Event Dispatcher,
subscribing to certain categories of events. In this case, the event notification system
service acts as an event adaptor and allows entities interested in specific events to
subscribe to the event notification system service instead of the NI Event Dispatcher.
One of the advantages of this approach is that potential event subscribers become less
dependent on the NID component. COBA Event Notification Service Interface
Specification defines the events that the event notification system service can subscribe
to.

Figure 4 Network Interface Driver Relationships

java.util.EventObject

EventObjectIF
(from EventService)

Resource
(from Resource Beans)

0.. n
+c hildren_

0.. n

NIDIf
11

EventSubscriberIF

deliverEvent(event : EventObjectIF)

(from EventService)

NIEventRegisterIF EventServiceRegistrationIF
(from EventService)

java.util.EventListner

NNoottee:: TThhiiss FFiigguurree aanndd tthhee ffoolllloowwiinngg ffeeww FFiigguurreess aarree ttoo ddeemmoonnssttrraattee
rreellaattiioonnsshhiippss ddeessccrriibbeedd iinn tthhee tteexxtt,, tthheeyy ddoo nnoott rreepprreesseenntt aa ccoommpplleettee vviieeww
ooff tthhee rreellaattiioonnsshhiippss.. RReeffeerr ttoo tthhee aapppprroopprriiaattee iinntteerrffaaccee ssppeecciiffiiccaattiioonnss ffoorr
ddeettaaiilleedd ddeessccrriippttiioonnss.. IInn aaddddiittiioonn,, tthhee ccllaassss nnaammeess aappppeeaarreedd iinn tthheessee ffiigguurreess
mmaayy cchhaannggee.. TThhee iinntteerrffaaccee ssppeecciiffiiccaattiioonnss aarree tthhee uullttiimmaattee aauutthhoorriittiieess iinn tthhee
cchhooiiccee ooff tthhee ccllaassss nnaammeess..

13////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Instrumentation Layer
The instrumentation layer consists of RBeans, which are JavaBeans. An RBean
represents a controllable resource. A controllable resource can be a single physical
device, a group of devices, a piece of equipment, a facility, etc. Examples of controllable
resources are sensors, pumps, rooms, floors, buildings, etc. A COBA service that
possesses Java Bean characteristics can also be an RBean and be controllable. For
example, a configuration agent service can be implemented so that the users allowed to
change device attributes can be added or removed at run time.
Since RBeans are JavaBeans, they can be manipulated visually with a builder tool for
building applications. The builder tool, however, is not part of the COBA framework kit.

RBeans

XML Binding
The JAXB package is used to bind resources expressed as XML elements to Java
classes. RBeans must be derived from appropriate classes generated from JAXB.

Threading Model
To allow accessing RBeans simultaneously by multiple clients, the RBean assumes that
it is running in a multi-threaded programming model. Therefore access to shared data
needs to be synchronized. It is the responsibility of the RBean, not the client, to make
sure that data is protected against simultaneous access. If an RBean cannot do this it
shall be well documented in the appropriate specification.

Text Representation
Attributes or properties of the RBean will be represented in XML format. All RBeans
include methods to marshal to or un-marshal from a valid XML document. The schema
for RBeans is defined in COBA XML Specification. Marshaling and un-marshalling
methods are provided by classes generated by JAXB package.

Common Attributes
Common attributes of Resource Beans are gathered in one class, the Attributes
Information class. The key characteristics are described below. Refer to the COBA
Resource Bean Interface Specification for details.

− Type
There are several kinds of resources. Resources are categorized into types. The
type is represented by a Type class. New types can be created by creating a sub-
class of the Type class.

− Identifier
Each controllable resource has a unique ID within the scope of the system controlled
by a COBA Server. Each RBean within the COBA Server has a unique ID. The ID of
a resource is specified in the XML document. It is the responsibility of the user who
configures the control system to ensure that all identifiers are unique.

http://java.sun.com/xml/jaxb/
http://java.sun.com/xml/jaxb/

14////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

If COBA Server discovers that a controllable resource has a duplicate name, the
corresponding RBean will not be created and an exception will be generated.

− Address
The address of an RBean is the network address of the corresponding physical
resource. Different types of resources may have different ways to address
themselves. The address interface class defines the interface for retrieving or setting
the address. Bean developers may need to supply a specialized address class along
with each new type of resources.

Interface
A resource is exposed to control and management through the interface of its RBean
representative. The interface of an RBean consists of the methods for reading and
writing its attributes and for invoking its operations. Because each type of resources may
include different attributes that are not necessarily shared by all resources, the RBeans
may not always have the same interface methods. However, there is a set of methods
that are provided by all RBeans. These methods are captured in the ResourceIF class
as shown in Figure 5. Note, the methods shown in the figure are for demonstration
purpose, the complete methods and up to date details are defined in the COBA
Resource Bean Interface Specification.
The control interface of a standard RBean consists of

− Constructors

− Attributes, i.e. the properties that are exposed through getter and setter methods.

− Operations, i.e. the remaining methods exposed in the interface.

Naming Convention
When defining the interface for RBean classes, a set of naming rules should follow the
pattern of JavaBean component architecture. The naming rules for COBA are a subset
of JMX rules and are outlined below. See Resource Bean Interface Specification for
details.

− Class
The name of an RBean’s Java interface is formed by adding the IF suffix to the
RBean’s Java class name. For example, the Java class Pump would implement
the Java PumpIF interface class. The interface of a Pump is referred to as its
Pump interface(PumpIF).

− Attributes
An attribute is represented by an attribute name and is associated with a specific
type. The name of an attribute follows the same rule of naming a Java class; the
type of an attribute is a valid Java class or a primitive Java type.

15////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

IInntteerrffaaccee RReeqquuiirreemmeenntt:: AAttttrriibbuuttee IIddeennttiittyy
XML uses the attribute name to denote an attribute of a resource. If the name string is
not efficient enough to identify an attribute in NID, numbering scheme can also be used
to identify an attribute. NID interface designer should consider this and decide whether
an attribute shall also be represented by a unique number or not.

The following rule is used to identify attributes over Resource Bean interfaces:

public AttributeType getAttributeName ();

public void setAttributeName (AttributeType value);

If a class definition contains a matching pair of getAttributeName and
setAttributeName methods that take and return the same type, these methods
define a read-write attribute called attributeName. If a class definition contains
only one of these methods, the method defines either a read-only or write-only
attribute.
The AttributeName cannot be overloaded. There cannot be two setters, getters
or a getter and setter pair for the same name that operates on different types.
The AttributeType may be of any Java class, or an array of any Java class.
When the type of an attribute is an array type, the getter and setter methods
operate on the whole array. Indexed method is used for accessing individual
array elements.

− Operations
In RBean, an operation is a Java method specified in its interface and
implemented in the class. Any method in the RBean interface that doesn’t fit an
attribute design pattern is considered to define an operation.

− Case Sensitivity
All attribute and operation names are case sensitive.

Relationships
As shown in Figure 5, the Resource Bean interacts with or relates to the following
components:

− Network Interface Component
- NID

The driver that communicates with the “real” resources. In the case where the
RBean does not represent a physical device, the driver is a dummy driver. This is
optional for RBeans that do not represent physical devices.

- NI Event Dispatcher
The event register for Event Dispatcher in the Network Interface Component.

16////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

− Data Store System Service
- Serializable

The interface to make the RBean persistent and to retrieve the persistent data of
the RBean.

− Bean Keeper System Service
The administrator that manages the life cycle of RBeans.

− Event Notification System Service
The event register for the Event Notification system service in the agent layer.
This is optional.

− Polling Timeout Strategy
The interface for implementation of actions when there is no reply to a number of
consecutive polls. This is a utility class for the RBean.

An RBean can interact with multiple instances of event dispatcher, as long as each of
these dispatcher implements the same set of event dispatching interfaces.

17////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Figure 5 RBean Relationships

Addres sIF

ResourceIF

getcurrent_polling_retries()
setcurrent_polling_retries()
getmax_polling_retries()
setmax_polling_retries()
receive()
start_timer()
stop_timer()
start_response_timer()
stop_response_timer()
timeout_handler()
convert()
getID()
setID()
getdescriptor()
setdescriptor()
getManufactureID()
setManufactureID()
getmisc()
setmisc()
getaddress()
setaddress()
getlocation()
setlocation()
getdeviceType()
setdeviceType()
getNI()
setNI()
getbinding()
setbinding()
all_attributes()
bean_iterator()

NIEventRegisterIF
(from Network Driver)

NIEventSubscriberIF

deliverEvent()

(from Network Driver)

ResourceInfo
ID_
descriptor_
manufactureID_
misc_
location_
deviceType_
NI_
max_poll_retries
polling_period

Poll ingTim eoutStrategy IF

BeanKeeperIF

get_bean_by_ID()
get_bean_by_address()
add_a_bean()
remove_a_bean()

(from BeanKeeper)

NIDIf
(from Network Driver)

Resource

1#attr_1

0..n
+children_

0..n

1

+polling_timeout_strgy

1

11

11

Serializable

18////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Agent Layer
The components in the agent layer are COBA services.
A COBA service is a system service if it is not meant to be accessed directly by control
applications. COBA services provide internal services to other parts of COBA Server.
A COBA service is an agent service if it can be used directly by control applications.
Since control applications are only allowed to operate on Bean interfaces, an agent
service is also a Java Bean.

System Service
The following system services are included in the COBA framework kit:

− Bean Keeper, a central registry of RBeans. Bean keeper is a lightweight Java
naming service. The interface of the bean keeper can be divided into two groups:
registration of RBeans and object references resolution of RBeans, from bean’s ID or
address attributes. See COBA Resource Bean Keeper Interface Specification for
details.

− Event Notification, a publisher-subscriber kind and event type based notification
service.

− User Access Control, for controlling users’ access rights. User Access Control is built
upon Java security model. See COBA System Security System.

− Dynamic Loader, allows the RBeans to be instantiated using Java classes and native
libraries to be dynamically downloaded from network. See COBA Dynamic Loader
Specification and OSGi Specification.

− Data Store Access, provides a uniform interface to store and retrieve information
about an object such as an RBean, etc. The data store can be a shared memory,
files, relational database management system, etc. See COBA Data Store Access
Specification for details.

Agent Services
The following agent services are included in the COBA framework kit:

− Event Notification, a publisher-subscriber kind event type based notification service.
Event Notification is built on top of Event Notification system service. See COBA
Event Notification Interface Specification.

− Logger, provides the applications a mechanism for selectively logging to certain
activities or events. See COBA Logger Interface Specification.

− Timer, provides time based notification services. See COBA Timer Interface
Specification.

− Monitor, provides polling mechanism to monitor registered resources periodically.
See COBA Monitor Interface Specification.

− Access Control, allows selected clients to set up user profiles for authorization and
authentication purposes. This agent service is built on User Access Control system
service.

19////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Messaging Adaptation Layer
The messaging adaptation layer handles message transportation. The layer ensures that
a message or a request from the control application is passed to the right RBean with
the appropriate context; similarly a response from the RBean is returned to the right
client. This process normally involves message marshalling and un-marshalling as well
as handling of protocol operations.
Several messaging mechanisms can be used by a control application to access the
control server. Examples of such mechanisms include JSP, RMI, CORBA, DCOM,
SOAP, etc. COBA Server supports JSP and RMI mechanisms in the first reference
implementation. XML is used to represent web page content.
The major components based on JSP technology are HTTP broker, JSP glue and JSP
pages. The major components based on RMI technology are RMI broker and RMI glue.

JSP Technology

Figure 6 HTTP Broker and COBA Services

Bean Keeper

User Access
Control

HTTP Broker

HTTP Server

JSP Engine

JSP Page

Agent
Service

JSP Glue

O
SG

I

HTTP Broker
The HTTP Broker relays JSP requests from the control application to the appropriate
agent service and relays responses from the agent service back to the control
application.

20////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

As shown in Figure 6, the major components in HTTP Broker are JSP Engine and HTTP
Server. The components implement HTTP protocol and relay messages. At the time of
writing, tomcat from Apache is chosen as the JSP engine (and HTTP server).

JSP Glue & JSP page
The JSP Glue is one or more Java classes making the agent service available to all the
control applications (under the control of the HTTP broker). A JSP page embeds the
application logic within standard HTML (or XML) templates and invokes appropriate
methods implemented by the JSP Glue. The JSP pages are not likely to be shared
among different control applications.

RMI Technology

Figure 7 RMI Broker and COBA services

RMI Broker

Bean Keeper

User Access
Control

Agent
Service

RMI Glue

O
SG

I

RMI Engine

Registry

HTTP
Server

RMI Broker
RMI Engine and HTTP server are the main components in the RMI broker.
RMI Engine consists of a set of classes provided by Java RMI packages that enable
RMI. One of the key elements in the engine is the registry. The RMI glue calls the
registry to associate a name with an object (an agent service or an RBean), the control
application looks up the object by its name in the registry and then invokes a method on
it. The registry implemented by COBA is based on the implementation provided by Java
RMI registry.
The object references of RBeans in COBA Server are HTTP style of URL names. The
RMI broker uses HTTP server to load class bytecodes.

http://jakarta.apache.org/tomcat/index.html
http://www.apache.org/

21////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

RMI Glue
For example, the RMI glue of a Pump RBean involves implementing the necessary RMI
interfaces such as java.rmi.Remote and extending the Pump implementation to expose
the entity Pump to the control application.
A control system may include hundreds or thousands of controllable resources. To avoid
straining the resources, not all the RBeans shall be active and remain active. In addition,
RBeans need the ability to store persistent references to objects, so that communication
among objects can still be established after a system restart. For this reason, the object
activation mechanism in RMI is used for providing persistent references to RBeans
representing physical resources. In general, RBeans representing agent services are
active and remain active. Other RBeans will be brought to active when they are referred
to.

22////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

COBA Agents
A COBA agent is an entity that runs in the control server and acts as the liaison between
the RBeans and the control application. COBA agents export agent services to control
applications.
A COBA agent involves the following components:

− Bean Keeper

− A set of RBeans representing the controlled resources

− One or more agent services

− JSP glue for web based control application, or RMI glue for RMI based control
application.

COBA agent uses the User Access and Security system services to control the access
rights of the agent services.
There may be more than one COBA agent running on COBA Server simultaneously.
The agents can either share the same Bean Keeper or have their own one, depending
on the characteristics of the agents.
Control applications access the agents through the interfaces of the agent services. The
document How to Build a COBA Agent and a COBA Control Solution describes how to
create an agent by integrating RBeans, Bean Keeper, system services, agent services,
etc.
The following common agents are included in the framework:

− Configuration Agent

− Query Agent

− Event Notification Agent
The solution provider can also build a monitor agent based on the monitor agent service.

Common Agents
Configuration Agent
The Configuration Agent is responsible for configuring the control network. In essence, it
exports the Bean Keeper interface methods to control applications. See COBA Agents
Specification for details.

Query Agent
The Query Agent allows control applications to retrieve attributes of the controlled
resources available to the agent in question. See COBA Agents Specification for details.

23////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Event Notification Agent
The Event Notification Agent allows the control applications to receive events based on
either event types or timers. The agent exports the interfaces of the Event Notification
services to the appropriate clients.
See COBA Agent Specification for details.

Application Specific Agents
The control solution providers can implement their own agents as counterparts of the
control applications running in the data network. The framework of COBA Server
provides several building blocks for solution providers for implementing and integrating
the agents. See How to Build a COBA Agent and a COBA Control Solution for details.

24////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

Terminology and Abbreviations
Agent

An agent is the execution CPU and memory resource that performs specified services.

Agent Service
A COBA service that is also an RBean. In other words, an agent service is a COBA service
that can be accessed directly by the control application.

Bean Keeper
A registry of RBeans.

Broker
A Java component in the server that handles messaging adaptation over data network.

COBA Server
A mediator between the control application and the control network, allowing the control
application to control and manage the network of controllable devices.

Component
A physical unit of implementation with well-defined interfaces, intended to be used as a
replaceable part of a system. The definition comes from the UML Reference Manual.

Control application
A program that runs in the data network to manipulate or monitor the devices in the control
network. A control application often reacts to changes in the states of these devices.

Control Network
A network consisting of controllable devices, connected to each other according to some
protocol.

Control Server
See COBA Server.

CORBA
Common Object Request Broker Architecture from OMG

COBA Service
A component in the COBA Server that offers a specific set of functionality. A COBA
service is either an agent service or a system service.

Core Service
A COBA service that is not an RBean. In other words, a core service is a COBA service
that CANNOT be accessed directly by a control application.

Device Bean
See RBean.

External Application
An External Application is a control application outside the COBA Server.

HTTP
Hypertext Transfer Protocol.

ID
A unique identifier for an RBean within the scope of a system. ID is composed of a
sequence of local IDs, starting from the root parent to the specific RBean.

Local ID
A unique identifier for an RBean within the scope of its enclosing parent.

http://www.omg.com/

25////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

LonWorks
A communication technology used in the Control Network. LonWorks is a trademark of
Echelon Corporation.

LonTalk
The control network protocol in the LonWorks technology. LonTalk is a trademark of
Echelon Corporation.

NID
Network Interface Driver

RBean
Resource Bean. A representation of a controllable entity, such as a device, a service, etc.
An RBean implements the Bean interface. If a Resource Bean represents a physical
device, it may also be called as a Device Bean.

Resource Bean
See RBean.

RMI
Remote Method Invocation. A Java technology for developing networked applications
without having to know the details of low level networking.

XML
Extensible Markup Language.

26////26 COBA Technical White Paper 19.11.200119.11.200119.11.200119.11.2001

References and Related Documents
JAVA Management Extensions Instrumentation and Agent Specification, V1.0

User Guide: How to Build a COBA Agent and a COBA Solution

Yet to be written

User Guide: How to Write a Configuration File in XML
Yet to be written

COBA Resource Bean Interface Specification
Yet to be written.

COBA Bean Keeper Interface Specification
Yet to be written.

COBA Event Notification Interface Specification
Yet to be written.

COBA Data Store Access Specification
Yet to be written.

COBA Device Discovery
Will be done after Release 0.5

COBA Dynamic Loader Specification
Yet to be written.

COBA Logger Interface Specification
Will be done after Release 0.5

COBA Monitor Interface Specification
Yet to be written.

COBA Network Interface Driver Specification
Yet to be written.

COBA System Security Specification
Will be done after Release 0.5

COBA Timer Interface Specification
Yet to be written.

COBA User Access Control Specification
Will be done after Release 0.5

COBA XML Specification
Yet to be written.

COBA Agent Specification
Yet to be written.

Nokia Home Server Hardware Specification
Yet to be written

OSGi Service Gateway Specification Release 1.0

http://java.sun.com/products/JavaManagement/

